Cleaving C–H bonds with hyperthermal H2: facile chemistry to cross-link organic molecules under low chemical- and energy-loads†

نویسندگان

  • Tomas Trebicky
  • Patrick Crewdson
  • Maxim Paliy
  • Igor Bello
  • Heng-Yong Nie
  • Zhi Zheng
  • Xiaoli Fan
  • Jun Yang
  • Elizabeth R. Gillies
  • Changyu Tang
  • Hao Liu
  • K. W. Wong
  • W. M. Lau
چکیده

A facile method for cross-linking organic molecules has been developed by computational modeling, instrumentation design, and experimental research. Briefly, organic molecules are hit by H2 with controllable kinetic energy in our novel apparatus where a high flux of hyperthermal H2 is generated. When a C–H bond of the organic molecule is hit by H2 at about 20 eV, efficient kinematic energy-transfer in the H2→H collision facilitates the C–H dissociation with nearly 100% reaction probability. When H2 hits other atoms which are by nature much heavier than H2, mass disparity bars effective energy transfer and this both blocks undesirable bond dissociation and reduces unnecessary energy wastage. The recombination of the carbon radicals generated by the C–H cleavage efficiently completes the production of C–C cross-links at room temperature with no additional energy/chemicals requirements. In addition to these green chemistry merits, this new method is better than other cross-linking techniques which rely on prerequisite reactions to add cross-linkers to the organic molecules or additional reactants and additives. These promising features are validated by several cross-linking trials which demonstrate desirable mechanical, electrical, chemical, and biochemical changes while inducing no undesirable damage of chemical functionalities in the original molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The electron density analysis of Cr(CO)3L complexes (L=benzene and graphyne)

h6-benzne, h6-garphyne) was studied with MPW1PW91 quantum chemical computations. Quantumtheory of atoms in molecules (QTAIM) was applied to elucidate these complexes Cr-CO bonds. Theellipticity (e) and h values of the Cr-CO bonds were calculated. The amount of pp-dp back-donation ofCr-CO bonds were illustrated by calculation of the magnitude of the quadrupole polarization of c...

متن کامل

Study of a hydrogen-bombardment process for molecular cross-linking within thin films.

A low-energy hydrogen bombardment method, without using any chemical additives, has been designed for fine tuning both physical and chemical properties of molecular thin films through selectively cleaving C-H bonds and keeping other bonds intact. In the hydrogen bombardment process, carbon radicals are generated during collisions between C-H bonds and hydrogen molecules carrying ∼10 eV kinetic ...

متن کامل

The DFT chemical investigations of optoelectronic and photovoltaic properties of short-chain conjugated molecules

The research in the short-chain organic -conjugated molecules has become one of the most interesting topics in the fields of chemistry. These compounds have become the most promising materials for the optoelectronic device technology. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing its efficiency. The control of the band gap of th...

متن کامل

H2 Elimination and C-C Bond Cleavage of Propene: A Theoretical Research

Propene dissociation channels were characterized by ab initio CCSD(T)/6-311++g(d,p) calculations. Inthis work the detailed mechanism of propene dissociation to C2H4+CH2, C2H2+H+CH3, C2H2+CH4 andC3H3+H2+H have been investigated. According to our calculations, ten fragments can be classified intofive dissociated channels. Our results point out that two mechanisms come into play in the H2 eliminat...

متن کامل

Quantum Chemical Investigation of the Photovoltaic Properties of Conjugated Molecules Based Oligothiophene and Carbazole

The research in the organic π-conjugated molecules and polymers based on thiophenehas become one of the most interesting topics in the field of chemistry physics and materials science. These compounds have become the most promising materials for the optoelectronic device technology.. The use of low band gap materials is a viable method for better harvesting of the solar spectrum and increasing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014